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Nomenclature Wa L 
WaT 

F Faraday's constant (96487Cmol  -~) ~a, (~c 
/ave averaged current density at interface between ~/s 

cathode and electrolyte (Am 2) a 
i 0 exchange current density (A m -2) ae 
i n current density to electrode (A m -2) ~b 
L characteristic length, minimum gap between ~b 0 

anode and cathode (m) 
1 distance from terminal along electrode (m) 

n unit normal vector perpendicular to Subscripts 
boundaries a anode 

R universal gas constant (8.3143Jmol ~K -~) c cathode 
T absolute temperature (K) e electrode 
t~ thickness of  thin electrode (m) y electrolyte 

Wagner number for linear kinetics 
Wagner number for Tafel kinetics 
anodic and cathodic transfer coefficients 
surface overpotential (=  ~be - ~by) (V) 
conductivity of  electrolyte (f2- z m - ~ ) 
conductivity of electrode (f~- ~ m ~) 
potential (V) 
potential difference between anode and 
cathode terminals (V) 

I. Introduction 

It is essential, in the design of  electrochemical systems, 
to accurately calculate the distribution of current den- 
sity in the electrolyte and over electrode surfaces with- 
out any geometrical or kinetic simplification [1, 2]. 
There is substantial literature on numerical methods 
to calculate secondary current distributions [2], but 
these methods require simplifications with regard to 
conductive features of  electrodes. In some work [3-t0] 
it is assumed that the electrode conductivity is infinite 
to avoid the difficulty of  calculating large changes in 
the potential from the electrolyte to the electrode 
region. This assumption is unrealistic when electrodes 
are thin or highly resistive, as in the case of electro- 
deposition on microelectronic devices, such as plating 
onto through-holes of  printed circuit boards, semicon- 
ducting compounds, printing heads of  printers, and 
so on. Though several reseachers have reported 
investigations of  current distribution with resistive 
electrodes [11-15], they are restricted to idealized 
cell configurations and not applicable for complex 
shapes. 

The purpose of  the present work is to establish a 
method of  numerical analysis for calculating the 
secondary current distribution, which is applicable 
for arbitrary two-dimensional electrochemical cells 
having electrodes of  uniform, but finite, conduc- 
tivities with nonlinear Butler-Volmer polarization 
kinetics. 

2. Modell ing 

2.1. Basic equations 

It is assumed that the system consists of  well stirred 
electrolyte with no concentration gradients, and elec- 
trodes, anode and cathode, whose conductivities are 
uniform and finite. The Laplace equation applies in 
both electrolyte and electrode regions [16]. 

v 2 G  = 0, v 2 G = 0 .  (1) 

By conservation of current, 

~" ,zvG = ,, "'~eV4'e, (2) 

at the electrolyte-electrode interfaces. The Butler- 
Volmer equation describes the relationship between 
the surface overpotential and the current density at 
the electrodes. 

[ i. = -an-VqSy = i o e x p \  R T  ] 

- exp ( - ~cFr/s ~]  
R T  JJ '  (3) 

where r/s = ~be - ~by. The applied voltage is constant 
at the terminals, if the electrochemical cell is operated 
under constant voltage, q~0. 

G = q~o, 4'c = 0 (4) 
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The natural boundary condition applies on insulated 
boundaries or planes of  symmetry. 

= 0.  (5 )  

To calculate the secondary current distribution in 
the cell, the Laplace Equations 1 may be solved sub- 
ject to the boundary conditions 4 and 5 satisfying the 
conservation of  current (Equation 2) and the internal 
boundary condition (Equation 3). The nonlinear 
boundary condition (Equation 3) and the difference in 
conductivity between the electrolyte and electrode 
complicate the numerical calculation. 

2.2. Thin electrode 

If the electrode is thin, it is not necessary to solve the 
two-dimensional Laplace equation with respect to the 
electrode and the potential along the electrode is 
determined by the following integral equation [17]. 

a~ dl = ~e O'R'V~by dl (6) 

2.3. Numerical method 

A double iterative numerical method was used to solve 
the system of equations. A flowchart of  the numerical 
method is shown in Fig. 1. The Laplace equation, 
V 2 (]~y = 0, was solved by the boundary element method 
(BEM) under initial boundary conditions, ~b~ = ~b0 at 
the anode and qSc = 0 at the cathode (Step 2 in Fig. 1). 
The surface overpotential, t/S, was explicitly deter- 
mined by Equation 3, and the boundary values, ~ba = 
~b0 - r/sa, qS~ = r/s~, were replaced by those of  the 
previous step (Step 3). Calculation of  the Laplace 
equation was repeated with the new boundary values 
(Step 2) until converged values of  q~y and Vq~y were 
obtained. Once converged values of qSy and VqSy had 
been obtained (Step 4), another Laplace equation, 
V2qS~ = 0, was solved (Step 6) by the BEM under the 

s.EP, < NEw.c 

I :  " 

DETERMINE 
STEP 4 WITH EXPLICIT 

METHOD 

STEP S I SET B.C. I 
(7~)interface 

I 
STEP6 I CALCULATE ,e & V,e I 

B.C: BOUNDARY ~ YES 
CONDITION 

Fig. 1. Flowchart of numerical calculation based on a double iter- 
ative boundary element method. 

boundary condition of the second kind determined by 
Equation 2 at the interface between electrolyte and 
electrode (Step 5). For a thin electrode, assumed as 
one-dimensional, Equation 6 was solved instead of the 
Laplace equation and ~b~ along the electrode was 
determined. The calculated potential at the interface 
was added to t/S (Step 7) and the procedure was again 
repeated until converged values of both ~by and q5 e, 
potential difference less than 10 -4 ~b 0 at the edge of  the 
cathode, were obtained (Step 8). The over-relaxation 
method was employed for the iterative procedure. 

Although the finite element method (FEM) or the 
finite difference method (FDM) are also useful for 
numerical calculations of  the Laplace equation, the 
boundary element method [19, 20] was used in the 
present study, because (i) it is not necessary to input 
coordinates of  internal nodal points, (ii) the method is 
suitable for the calculation on a microcomputer with 
relatively simple programming (in the present study, 
an NEC Model PC-9801UV personal computer was 
used with BASIC programming), and (iii) the poten- 
tial gradient, necessary for calculations of Equations 
2, 3, 5 and 6, is directly determined. 

3. Results and discussion 

3.1. Calculation conditions 

Parametric calculations for cells consisting of flat 
anodes and corner cathodes were performed to demon- 
strate the present method. Calculation parameters are 
listed in Table 1 and cell geometries are shown in 
Fig. 2. The anode was assumed to be infinitely conduc- 
tive, but conductive properties of the cathode, as well 
as the Wagner number, were selected as calculation 
parameters. Linear basis functions were employed 
between nodal points. 

3.2. Potential and current density distributions 

Figure 3 shows the result of  calculations on potential 
distributions in the cells, and Fig. 4 the normal current 
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Fig. 2. Cell geometries for calculations. (o) Nodal point, (---) 
insulated boundaries, (- - -) planes of symmetry. (a) Infinitely con- 
ductive or thin cathode (45 nodal points); (b) resistive cathode (45 
nodal points on electrolyte; 37 nodal points on cathode). 
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t'ig. 3. Potential distribution. Curves in the figures designate 10% pitch equipotential surfaces. (a) CASE 1: WaT = 0.12; (b) CASE 2: 
JVa T = 0.16; (c) CASE 3; W a  r = 0.14; (d) CASE 4: WaT = 0.18; (e) CASE 5: W a  T = 0.14; and (f) CASE 6: Wa T = 0.17. 
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Table I. Calculation conditions* 

Cathode Wa L = 0 Wa L = 0.5 Cell Remarks 
(Primary current geometry 
distribution) 

Infinitely CASE 1 CASE 2 Fig. 3a 
conductive 

Thin CASE 3 CASE 4 Fig. 3a t , /L = 2 x 10 -3 
ae/a = 10 6 

Resistive CASE 5 CASE 6 Fig. 3b ae/a = 10 2 

* According to Dukovic's definition [2], three dimensionless parameters which characterize the nonlinear polarization system are used. 
Wa L =-- RT~[[(% + otc)FLiol, Wa T =-- RTa/(otcFLiaw ), and ~ [ ~  = 1. 

density along the cathodes. The number of iterations 
was around 15 for CASEs 2-6 to obtain a potential 
difference less than 10 -4 ~0 at the edge of the cathode. 

The following observations can be made from the 
figures: 
(i) In CASE 1 the current density is concentrated 
at the edge of cathode. (The edge corresponds to a 
singular point. The current density at the edge is 
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Fig. 4. Current density distributions along cathodes. The abscissa is 
a distance along the cathode and the ordinate is the normalized 
current density, where i I = o4ao[L (current density in case of infinite 
parallel plate separated at the distance of  L) and /2 = od&/L2 
(current density in case of infinite parallel plate separated at the 
distance of L2, where L 2 is the distance between the anode and the 
bottom plate of the cathode.) (a) Infinitely conductive cathode: 
CASE 1 ( ) Wa L = 0; CASE 2 ( - - - - )  Wae = 0.5. (b) Thin 
cathode: CASE 3 ( ) War = 0; CASE 4 ( - - - - )  War = 0.5. 
(c) Resistive cathode: CASE 5 ( ) Wax, = 0; CASE 6 ( - - - - )  
W a  L = 0 . 5 .  

theoretically infinite [18].) On the other hand, the 
current density is zero in this case at the corner of the 
cathode [18]. 
(ii) In accordance with the increase in polarization 
(CASEs 2, 4, 6), a potential drop (or surface over- 
potential) appears at the electrode-electrolyte inter- 
faces and the current distribution becomes more 
uniform. The singularity at the edge is nonexistent in 
polarized cases, and the current density is finite both 
at the edge and the corner of the polarized cathode. 
(iii) The non-polarized thin or resistive electrode 
(CASEs 3, 5) also eliminates the singularity. Although 
a surface overpotentia] does not exist at interfaces in 
these cases, a potential drop due to ohmic resistance 
arises in the cathode. 
(iv) The polarized thin or resistive electrode (CASEs 
4, 6) further reduces the rise in current density at the 
edge because of the polarization at the interfaces and 
the ohmic potential drop in the cathode. 
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